x^2+(x^2+4x+4)=100

Simple and best practice solution for x^2+(x^2+4x+4)=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+(x^2+4x+4)=100 equation:



x^2+(x^2+4x+4)=100
We move all terms to the left:
x^2+(x^2+4x+4)-(100)=0
We get rid of parentheses
x^2+x^2+4x+4-100=0
We add all the numbers together, and all the variables
2x^2+4x-96=0
a = 2; b = 4; c = -96;
Δ = b2-4ac
Δ = 42-4·2·(-96)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-28}{2*2}=\frac{-32}{4} =-8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+28}{2*2}=\frac{24}{4} =6 $

See similar equations:

| -34=56+18x | | 8+5x10=0 | | -5(2x-6)+3x=72 | | (4+a)/7=1 | | 2*6x-19=10x-12 | | 4(c-5)=2c-20 | | 170=10a | | 2(x+3)-7x=6x | | (1/8)÷1/24=x | | -5d-6=4 | | 1.4=1.6(t+6)=4.6 | | 2/5q=10 | | 2x-7+4x=x-8-5x | | 6/5•n=60 | | .5c+3.49+(-2c)=4 | | x-8-5x=-2x+3-x | | t+83.55=107.4 | | 4(3b-1)=9-6 | | 5x-3+2x=7-x+4x | | .5c+3.49+(-2)=4 | | 14x+6=9x-8 | | 100/2p=45+p | | -2(x+15)=17.63 | | n+4/8-6=28 | | 1=b8b+7b | | -5x-9=-7x-23 | | -18-(x)=2 | | 19v-2-7v=31+6v-15 | | -8b+7+8b=7 | | -4x+5=8x-9 | | 31/3(12+a)=43 | | 3x-11+7x-16+9x+20=316 |

Equations solver categories